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Diabetes

Diabetes Physiology
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Diabetes

Diabetes Physiology: Type 1 Diabetes Mellitus (T1DM)
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Diabetes

Usually appears before age 35.

An autoimmune disease.

Characterized by the destruction of the pancreatic β-cells.

An insulin-dependent treatment is essential from the beginning of
the disease to prevent dehydration, ketoacidosis, and death.

Consequences:

hyperglycaemia (high sugar) −→ long-term
hypoglycaemia (low sugar) −→ short-term
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Diabetes impact

Diabetes world distribution

Rank Territory Value
190 Congo 0.9
192 Cote d'Ivoire 0.8
192 Senegal 0.8
192 Uganda 0.8
192 Cameroon 0.8
196 Nigeria 0.4
196 Ghana 0.4
198 Mali 0.3
198 Gambia 0.3
198 Togo 0.3

HIGHEST AND LOWEST DIABETES PREVALENCE

Technical notes

© Copyright 2006 SASI Group (University of Sheffield) and Mark Newman (University of Michigan)

percentage of people aged over fifteen with diabetes, in 2001

Rank Territory Value
1 Mexico 14
2 Trinidad & Tobago 14
3 Saudi Arabia 12
4 Mauritius 12
4 Hong Kong (China) 12
6 Papua New Guinea 12
7 Cuba 12
8 Puerto Rico 11
8 Singapore 11
10 Jamaica 11
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Diabetes Prevalence

www.worldmapper.org

Produced by the SASI group (Sheffield) and Mark Newman (Michigan)

“Diabetes is responsible for over one million amputations each year. It is a major cause of blindness. It is the largest
cause of kidney failure in developed countries and is responsible for huge dialysis costs.”

There are three types of diabetes, two
are related to insulin which regulates
our blood sugar levels. Having type 1
diabetes means that you are unable
to produce enough insulin, so you
need to inject insulin to survive. The
more common type 2 diabetes is when
insulin cannot be used properly by
the body - this type can often be
managed through diet and exercise.
The third type is related to pregnacy.

The highest diabetes prevalence is in
North America. Of the total North
American cases, 4% are in Canada,
33% are in Mexico, and 62% are in
the United States. The largest
population of diabetics in 2001 was
in India: 56 million people.

• Data are from the World Bank’s 2005 World
Development Indicators.

• See website for further information.

Territory size shows the proportion of all people in the
world living with diabetes who live there.

Map 239

Unite For Diabetes, 2006
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Structure

Artificial Pancreas

Sensor: CGM (Continuous
Glucose Monitoring) meter.

Actuator: CSII (Con-
tinuous Subcutaneous
Insulin Infusion) pump.

The control algorithm is usually designed based on a mathematical
model of the insulin-glucose dynamics
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Dynamics

Insulin-Glucose Dynamics for Controller Design

Simulation models

Sorensen Provide good glucose prediction, but
mathematically complexUVA/Padova

Cambridge

+

Most of well established theory of control law design accommodates only
simpler models, and simplifications are generally considered at the controller

design phase

⇓

Control-oriented models represents the underlying dynamics, but with a
much simpler mathematical formulation
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Control challenges

Problem challenges and controllers

Challenges

Intra- and inter-patient uncertainty

Subcutaneous-intravenous delays in CGM and insulin injection

Nonlinear, time-varying dynamics

Popular control methodologies

Proportional-integral-derivative (PID): since Fisher (1991): most popular
industrial (model-less) method.

Model Predictive Control (MPC): comes from process control.

Our design methodologies

Robust control: includes model uncertainty restrictions, mainly for Linear
Time Invariant (LTI) models, could be conservative

Linear Parameter Varying (LPV) control: includes nonlinear/time-varying
dynamics

Switched LQG/LPV: ideal to focus on normo/hypo/hyperglycaemias
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Model challenges

Challenges and solutions adopted

Control-oriented model: challenge # 1

Inter-patient variations:

Cover uncertainty and apply Robust control

Tune model to patient (model personalization) using clinical data without
going through an Identification process

Control-oriented model: challenge # 2

Intra-patient variations, nonlinearities, simplicity:

LPV model (possibly affine)
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Personalization

Model Personalization

Model personalization and the 1800 rule

For a given patient, the underlying insulin-glucose model must be tuned to
patient-specific characteristics [1]

⇓

Problem

It is not possible to estimate the values of all system parameters from in vivo
dynamic data [2]

⇓

Control-oriented solution

Adapt a low-order model structure based on a priori patient information, e.g.
the 1800 rule: 1800/TDI.

[1] S. Patek et al., “In Silico Preclinical Trials: Methodology and Engineering Guide to Closed-Loop Control in T1DM”, 2009.
[2] C. Cobelli et al., “Diabetes: Models, Signals and Control”, 2009.
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Personalization

Model Personalization and the 1800 rule

The 1800 rule indicates the maximum drop in glucose concentration,
measured in mg/dl, after a 1 U injection of rapid-acting insulin
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Mean DC gain for the adult patients of the distribution version of the UVA/Padova simulator, linearized at different
glucose concentrations

Patient’s insulin sensitivity depends, amongst other factors, on the glucose concentra-
tion, therefore... at which glucose concentration does it work best, or is it most appro-
priate?
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Personalization

Model Personalization and the 1800 rule

A 1 U insulin bolus was applied to each in-silico adult of the distribution version of the
UVA/Padova simulator at a large number of different steady-state glucose concentra-
tions (operation conditions), and the maximum glucose decrease was captured in each
case.

Initial glucose concentration [mg/dl]
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Glucose drop for each in-silico adult (gray lines: Study patients, red line: Adult #007) and the mean values excluding
Adult #007 (blue line) at different operation conditions after a 1 U insulin bolus. The magenta dashed line indicates
the average value of the 1800 rule.

The (average) 1800 rule is only rendered correct at 235 mg/dl
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Objectives

Control-oriented model objectives

1 Determine a low order model that copes with the previous challenges and
can be used on well-known controller design methods.

LPV structure with delay

2 Define a method to personalize the model based on the 1800 rule.

Identify an average model based on previous structure
Fix all parameters except for two: p1 to adjust with glucose in real-time (LPV)
and k to personalize a particular patient using the 1800-rule

3 Quantify the quality of the model in open– and closed–loop.

RMSE for OL and ν-gap for CL
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Average model

Average Model Definition

According to control-oriented models previously presented:

Model 1: K. van Heusden et al., “Control-relevant models for glucose control using
a priori patient characteristics,” IEEE Trans. Biomed. Eng., 2012.

Model 2: J. Lee et al., “Model-based personalization scheme of an artificial pan-
creas for type 1 diabetes applications,” in ACC, 2013.

Model 3: P. Colmegna et al., “Switched LPV glucose control in type 1 diabetes,”
IEEE Trans. Biomed. Eng., 2016.

the following model structure from the subcutaneous insulin delivery (pmol/min) to the
subcutaneous glucose concentration deviation (mg/dl) is proposed:

G(s) = k
s + z

(s + p1)(s + p2)(s + p3)
e−15s (1)
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Time-varying parameter

Parameter p1

Parameter p1 computed at different values of glucose concentration g (light-blue), and piecewise polynomial function
p1(g) (orange).

Glucose concentration [mg/dl]

p
1

 [
ra

d
/m

in
]
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2
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14
x 10

−3

p1(g) = qig
3

+ rig
2

+ sig + ti

i g region [mg/dl] qi ri si ti

1 110≤ g 0 9.0580× 10−8 −5.3562× 10−5 1.1357× 10−2

2 65≤ g < 110 −4.2382× 10−8 1.1402× 10−5 −9.1676× 10−4 2.5849× 10−2

3 59≤ g < 65 0 1.7321× 10−4 −2.3080× 10−2 7.7121× 10−1

4 g < 59 0 −2.9126× 10−6 2.4514× 10−4 8.0865× 10−3

Fitting achieved: 97.24%
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LPV model

Average LPV Model

ẋ(t) = A(p1)x(t) + Bu∆(t)

y∆(t) = Cx(t)

with

A(p1) =

0 1 0
0 0 1
0 −p2p3 −(p2 + p3)

+ p1

 0 0 0
0 0 0

−p2p3 −(p2 + p3) −1


B =

[
0 0 1

]T
C = k

[
z 1 0

]
A delay of 15 min should be added to the output.

The (average) LPV model is affine in the parameter p1
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Results

Model quality

Performance Analysis

Open-Loop Closed-Loop

Is a particular model capable of
providing a good fit to the UVA/Padova
model?
Measure: RMSE

Is a particular model capable of
providing a good closed-loop
performance?
Measure: ν-gap metric
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OL comparison

Open-Loop Comparison

Normalized RMSE between the time-response of the control oriented models and the
nonlinear UVA/Padova model to a 1 U insulin bolus at different operation conditions

Personalized LPV model
Average LTI model
Model 1
Model 2
Model 3

The personalized LPV model has the best fit for
most of the glucose concentration values that were

considered (average improvement ≥ 81%)
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OL comparison

Open-Loop Comparison

Normalized RMSE between the time-response of the control oriented models and the
nonlinear UVA/Padova model to a 1.5 U insulin bolus at different operation conditions

Personalized LPV model
Average LTI model
Model 1
Model 2
Model 3

The personalized LPV model has the best fit for
most of the glucose concentration values that were

considered (average improvement ≥ 83%)
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OL comparison

Open-Loop Comparison

Normalized RMSE between the time-response of the control oriented models and the
nonlinear UVA/Padova model to a 2 U insulin bolus at different operation conditions

Personalized LPV model
Average LTI model
Model 1
Model 2
Model 3

The personalized LPV model has the best fit for
most of the glucose concentration values that were

considered (average improvement ≥ 72%)
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CL comparison

Closed-Loop Comparison

ν-gap δν between the UVA/Padova model linearized at different glucose concentrations and the control-oriented

models

Model Average δν Improvement (%)

Personalized LPV model 0.1803 38.3
Personalized LTI model 0.2261 10.3
Average LTI model 0.2493 0
Model 1 0.3739 -33.3
Model 3 0.4619 -46.0
Model 2 0.5087 -51.0
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Nominal control-oriented model

Remarks on the nominal control-oriented LPV model

A control-oriented model of insulin-glucose dynamics that includes problem chal-
lenges was characterized.

The proposed LPV model is affine in the parameter p1 (suitable for controller de-
sign).

Parameter p1 is itself a polynomial function of the glucose level (real-time measur-
able).

The ν-gap metric was employed as a quantification of CL performance.

The RMSE and the ν-gap metric indicate that the personalized LPV model achieves
smaller errors compared to previous control-oriented models.
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In-silico tests

Designs: Switched LPV controller

Controller structure
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Colmegna, Sánchez-Peña, Gondhalekar, Dassau, Doyle III, Switched LPV Glucose Control in

T1DM, IEEE Transactions on Biomedical Engineering, 63(6), 2016
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pre-Clinical tests

Designs: Switched LQG controller – ARG algorithm
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Switched-LQG + SAFE controller: ARG (Automatic Regulation of Glucose)
algorithm
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pre-Clinical tests

pre-Clinical test results
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101 in-silico adult patients in the complete UVA/Padova simulator,
considering a 50g meal.
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First clinical trials

Clinical tests: first trials in Latin America (Nov. 2016/June 2017)

- Sánchez-Peña, Colmegna, ..., Cherñavvsky, Artificial Pancreas: First clinical trials in
Argentina, IFAC World Congress, Toulouse, 2017

- ........ First clinical trials in Latin America without CHO counting, J. of Diabetes Science &
Tech., 2018.

- Colmegna, Garelli, DeBattista, Sánchez-Peña, ARG algoritm, Control Eng. Practice, 2018
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Monitoring

Clinical tests: patients monitoring during test

Patient monitoring during clinical test (left) glucose curve of a patient, (right) traffic light indication for all patients.
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Clinical Results

Clinical tests: some results
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Figure: (left) Average value of Dexcom G4 in open-loop (red) and closed-loop (blue) during the night. The filled
areas represent±1 STD. Dashed lines (green and orange) indicate glucose concentration limits (70-180 and
70-250 mg/dl).
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Current research

What’s next?

Invalidate the data vs. nominal LPV model

Produce an LPV (control-oriented) model set

Design a robust controller (switched-LPV)

Compare both designs: nominal vs robust
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Invalidation

Invalidation results [1]

G(ρ)
u

ρ

Wδ ∆
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[1] M. Sznaier, M. C. Mazzaro, An LMI approach to control-oriented identification and model

(in)validation of LPV systems, IEEE Trans Automat Contr 48 (9), 2003.
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Controller design

Controller design
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with Wp(s) and Wu(s), the tracking and control action weights, respectively.
The robust design also includes Wδ(s).
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Results and comparison

Controller comparison
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Results and comparison

Controller comparison
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Conclusions & Future research

Conclusions & Future research

1 A low-order, control-oriented model set provides an adequate coverage
of several dynamic and parametric uncertainties, e.g. intra-patient varia-
tions.

2 An LPV or switched-LPV controller provides a robust design procedure.

3 Next step: augment the nominal LPV model with an extra parameter
(real-time measured/estimated) in order to (nominally) represent the intra-
patient variations −→ invalidate −→ refine LPV model set −→ (hopefully)
improve performance.

4 Next clinical trials: children (Hospital Garrahan)
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THANKS FOR YOUR ATTENTION
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QUESTIONS?
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