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Diabetes

@ Usually appears before age 35.
@ An autoimmune disease.
@ Characterized by the destruction of the pancreatic §-cells.

@ An insulin-dependent treatment is essential from the beginning of
the disease to prevent dehydration, ketoacidosis, and death.

@ Consequences:

@ hyperglycaemia (high sugar) — long-term
@ hypoglycaemia (low sugar) — short-term
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Diabetes impact

Diabetes world distribution

The highest diabetes prevalence is in
North America. Of the total North
American cases, 4% are in Canada,
33% are in Mexico, and 62% are in
the United States. The largest
population of diabetics in 2001 was
in India: 56 million people.

Territory size shows the proportion of all people in the
world living with diabetes who live there.
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Structure

Artificial Pancreas

Sensor: CGM (Continuous
Glucose Monitoring) meter.

Actuator: Csll (Con-
tinuous Subcutaneous
Insulin Infusion) pump.

The control algorithm is usually designed based on a mathematical
model of the insulin-glucose dynamics
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Problem challenges and controllers

Challenges

@ Intra- and inter-patient uncertainty
@ Subcutaneous-intravenous delays in CGM and insulin injection

@ Nonlinear, time-varying dynamics

V.

Popular control methodologies

@ Proportional-integral-derivative (PID): since Fisher (1991): most popular
industrial (model-less) method.

@ Model Predictive Control (MPC): comes from process control.

v

Our design methodologies

@ Robust control: includes model uncertainty restrictions, mainly for Linear
Time Invariant (LTI) models, could be conservative

@ Linear Parameter Varying (LPV) control: includes nonlinear/time-varying
dynamics

@ Switched LQG/LPV: ideal to focus on normo/hypo/hyperglycaemias
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Challenges and solutions adopted

Control-oriented model: challenge # 1

@ Inter-patient variations:

o Cover uncertainty and apply Robust control

Control-oriented model: challenge # 2
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Model challenges

Challenges and solutions adopted

Control-oriented model: challenge # 1

@ Inter-patient variations:

o Tune model to patient (model personalization) using clinical data without
going through an Ildentification process

Control-oriented model: challenge # 2

@ Intra-patient variations, nonlinearities, simplicity:

o LPV model (possibly affine)
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Personalization

Model Personalization and the 1800 rule

The 1800 rule indicates the maximum drop in glucose concentration,
measured in mg/dl, after a 1 U injection of rapid-acting insulin

Mean DC gain

70 90 110 130 150 170 190 210 230 250

Glucose concentration [mg/dl]

Mean DC gain for the adult patients of the distribution version of the UVA/Padova simulator, linearized at different
glucose concentrations

Patient’s insulin sensitivity depends, amongst other factors, on the glucose concentra-
tion, therefore... at which glucose concentration does it work best, or is it most appro-
priate?
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Personalization

Model Personalization and the 1800 rule

A 1 U insulin bolus was applied to each in-silico adult of the distribution version of the
UVA/Padova simulator at a large number of different steady-state glucose concentra-
tions (operation conditions), and the maximum glucose decrease was captured in each
case.

LIS S e s s s B N

Mean glucose drop [mg/dl]

T T T T T T T T T
I T N A 4 T A T N

T S T B 0 B B s =
50 70 90 110 130 150 170 190 210 230 250
Initial glucose concentration [mg/dl]

Gilucose drop for each in-silico adult (gray lines: Study patients, red line: Adult #007) and the mean values excluding
Adult #007 (blue line) at different operation conditions after a 1 U insulin bolus. The magenta dashed line indicates
the average value of the 1800 rule.

The (average) 1800 rule is only rendered correct at 235 mg/d|
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Control-oriented model objectives

@ Determine a low order model that copes with the previous challenges and
can be used on well-known controller design methods.
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Control-oriented models
°

Objectives

Control-oriented model objectives

@ Determine a low order model that copes with the previous challenges and
can be used on well-known controller design methods.

@ LPV structure with delay

© Define a method to personalize the model based on the 1800 rule.
o I|dentify an average model based on previous structure
o Fix all parameters except for two: p; to adjust with glucose in real-time (LPV)
and k to personalize a particular patient using the 1800-rule

© Quantify the quality of the model in open— and closed—loop.

o RMSE for OL and v-gap for CL
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Control-oriented models
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Average model

Average Model Definition

According to control-oriented models previously presented:

@ Model 1: K. van Heusden et al., “Control-relevant models for glucose control using
a priori patient characteristics,” IEEE Trans. Biomed. Eng., 2012.

@ Model 2: J. Lee et al., “Model-based personalization scheme of an artificial pan-
creas for type 1 diabetes applications,” in ACC, 2013.

@ Model 3: P. Colmegna et al., “Switched LPV glucose control in type 1 diabetes,’
IEEE Trans. Biomed. Eng., 2016.

the following model structure from the subcutaneous insulin delivery (pmol/min) to the
subcutaneous glucose concentration deviation (mg/dl) is proposed:

s+ 2z 15
e 15s

) = T oG+ p) G 2

M
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Time-varying parameter

Parameter p,

Control-oriented models

Parameter p; computed at different values of glucose concentration g (light-blue), and piecewise polynomial function
p1(g) (orange).

p1 [rad/min]

L
50 70 90 110 130 150 0 1 210 230 250
Glucose concentration [mg/dl]
2
pi(e) = aig” + rig® + sig + 1
i g region [mg/dl] qi ri S 1
1 1mo<g 0 9.0580 x 1078  —5.3562 x 107> 1.1357 x 10~2
2 65<g< 110 —4.2382x 108 1.1402 X 1075 —9.1676 x 10~*  2.5849 x 102
3 59< g <65 0 1.7321 x 10~%  —2.3080 x 102  7.7121 x 10!
4 g<59 0 —2.9126 x 10~° 2.4514 x 10~*%  8.0865 x 1073

Fitting achieved: 97.24%
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LPV model
Average LPV Model
x(1r) = A(p1)x(r) + Bua ()
ya(r) = Cx(t)
with
0 1 0 0 0 0
A1) = |0 0 1 +p | 0 0
0 —pp3  —(p2+p3) —p2p3
B = [0 0o 1]
C = k[z 1 0]
A delay of 15 min should be added to the output.

0
—(p2+p3) -1

DAy
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Control-oriented models
°

Results

Model quality

Performance Analysis

Open-Loop Closed-Loop
Is a particular model capable of Is a particular model capable of
providing a good fit to the UVA/Padova  providing a good closed-loop
model? performance?

Measure: RMSE Measure: v-gap metric

32/57
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Open-Loop Comparison

Normalized RMSE between the time-response of the control oriented models and the
nonlinear UVA/Padova model to a 1 U insulin bolus at different operation conditions
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Glucose concentration [mg/dl]

The personalized LPV model has the best fit for
most of the glucose concentration values that were
considered (average improvement > 81%)

d model set
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OL comparison

Open-Loop Comparison

Normalized RMSE between the time-response of the control oriented models and the
nonlinear UVA/Padova model to a 1.5 U insulin bolus at different operation conditions
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Model 1 most of the glucose concentration values that were
m | Mode2 considered (average improvement > 83%)
m odel 3

34/57



Introduction

OL comparison

Artific

Control-oriented models Controller design and tests (In)valida

Open-Loop Comparison

Normalized RMSE between the time-response of the control oriented models and the
nonlinear UVA/Padova model to a 2 U insulin bolus at different operation conditions
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The personalized LPV model has the best fit for
most of the glucose concentration values that were
considered (average improvement > 72%)

d model set
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v-gap &, between the UVA/Padova model linearized at different glucose concentrations and the control-oriented

models

T TR TR T N B T T B I T TR NN TR R R S B |
50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

Glucose concentration [mg/dl]

Model Average 4,

Improvement (%)

Personalized LPV model
Personalized LTI model
Average LTI model
Model 1

Model 3

Model 2

0.1803
0.2261
0.2493
0.3739
0.4619
0.5087

38.3
10.3
0
-33.3
-46.0
51.0
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Control-oriented models
°

Nominal control-oriented model

Remarks on the nominal control-oriented LPV model

@ A control-oriented model of insulin-glucose dynamics that includes problem chal-
lenges was characterized.

@ The proposed LPV model is affine in the parameter p; (suitable for controller de-
sign).

@ Parameter p, is itself a polynomial function of the glucose level (real-time measur-
able).

@ The v-gap metric was employed as a quantification of CL performance.

@ The RMSE and the v-gap metric indicate that the personalized LPV model achieves
smaller errors compared to previous control-oriented models.
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Colmegna, Sanchez-Pefia, Gondhalekar, Dassau, Doyle Ill, Switched LPV Glucose Control in
T1DM, IEEE Transactions on Biomedical Engineering, 63(6), 2016
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pre-Clinical tests

Designs: Switched LQG controller — ARG algorithm

1
LOW-PASS | 1Y
FILTER :

Switched-LQG + SAFE controller: ARG (Automatic Regulation of Glucose)
algorithm
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pre-Clinical tests

pre-Clinical test results

(In)validated model set
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101 in-silico adult patients in the complete UVA/Padova simulator,
considering a 50g meal.
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First clinical trials

Clinical tests: first trials in Latin America (Nov. 2016/June 2017)

- Sanchez-Pefia, Colmegna, ..., Cherfiavvsky, Artificial Pancreas: First clinical trials in
Argentina, IFAC World Congress, Toulouse, 2017

EE First clinical trials in Latin America without CHO counting, J. of Diabetes Science &
Tech., 2018.

- Colmegna, Garelli, DeBattista, Sanchez-Pefia, ARG algoritm, Control Eng. Practice, 2018
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Monitoring

Clinical tests: patients monitoring during test

Patient monitoring during clinical test (left) glucose curve of a patient, (right) traffic light indication for all patients. w557
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Clinical Results

Clinical tests: some results

Glucose concentration [mg/dl]

00 01 02

s
04 05 06 07

03
Time [h]
Figure: (left) Average value of Dexcom G4 in open-loop (red) and closed-loop (blue) during the night. The filled

areas represent +1 STD. Dashed lines (green and orange) indicate glucose concentration limits (70-180 and
70-250 mg/d).

=] 5 = E DAy
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Current research

What’s next?

@ Invalidate the data vs. nominal LPV model

@ Produce an LPV (control-oriented) model set

@ Design a robust controller (switched-LPV)

@ Compare both designs: nominal vs robust
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Invalidation results !

L G O
e f Ja
500s + 1
W -
5(5) 505 + 1
Al < v
Il < 0.05
solve
patl
w = y—d—G(p)*u  Uncertainty bound  vs subject # vs In-
G(p) : nominal model sulin sensitivity (IS) factor

[1] M. Sznaier, M. C. Mazzaro, An LM/ approach to control-oriented identification and model
(in)validation of LPV systems, |IEEE Trans Automat Contr 48 (9), 2003.
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Controller design

with W, (s) and W, (s), the tracking and control action weights, respectively.
The robust design also includes Wjs(s).
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(In)validated model set
000000

Nominal (white). A = 0%, B= 77%, C = 0%, D = 23%, D = 0%
Robust (blue). A = 0%, B= 100%, C = 0%, D = 0%, D = 0%
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nominal vs robust controller comparison for all subjects and IS variations.
(left) CVGA and (right) time-in-range.
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Conclusions & Future research

@ A low-order, control-oriented mode! set provides an adequate coverage
of several dynamic and parametric uncertainties, e.g. intra-patient varia-
tions.
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Conclusions & Future research

@ A low-order, control-oriented mode! set provides an adequate coverage
of several dynamic and parametric uncertainties, e.g. intra-patient varia-
tions.

© An LPV or switched-LPV controller provides a robust design procedure.

© Next step: augment the nominal LPV model with an extra parameter
(real-time measured/estimated) in order to (nominally) represent the intra-
patient variations — invalidate — refine LPV model set — (hopefully)
improve performance.
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Conclusions & Future research

@ A low-order, control-oriented mode! set provides an adequate coverage
of several dynamic and parametric uncertainties, e.g. intra-patient varia-
tions.

© An LPV or switched-LPV controller provides a robust design procedure.

© Next step: augment the nominal LPV model with an extra parameter
(real-time measured/estimated) in order to (nominally) represent the intra-
patient variations — invalidate — refine LPV model set — (hopefully)
improve performance.

@ Next clinical trials: children (Hospital Garrahan)
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